Experimental finding of modular forms for noncongruence subgroups
نویسنده
چکیده
In this paper we will use experimental and computational methods to find modular forms for non-congruence subgroups, and the modular forms for congruence subgroups that they are associated with via the Atkin–Swinnerton-Dyer correspondence. We also prove a generalization of a criterion due to Ligozat for an eta-quotient to be a modular function.
منابع مشابه
The Arithmetic Subgroups and Their Modular Forms
Arithmetic subgroups are finite index subgroups of the modular group. Classically, congruence arithmetic subgroups, which can be described by congruence relations, are playing important roles in group theory and modular forms. In reality, the majority of arithmetic subgroups are noncongruence. These groups as well as their modular forms are central players of this survey article. Differences be...
متن کاملModular Forms on Noncongruence Subgroups and Atkin-Swinnerton-Dyer Relations
This is a joint project with Liqun Fang Ben Linowitz Andrew Rupinski Helena Verrill We give new examples of modular forms on noncongruence subgroups whose l-adic representations are modular and whose expansion coefficients satisfy Atkin-Swinnerton-Dyer congruences.
متن کاملFinite Index Subgroups of the Modular Group and Their Modular Forms
Classically, congruence subgroups of the modular group, which can be described by congruence relations, play important roles in group theory and modular forms. In reality, the majority of finite index subgroups of the modular group are noncongruence. These groups as well as their modular forms are central players of this survey article. Differences between congruence and noncongruence subgroups...
متن کاملModular Forms and Modular Symbols for Noncongruence Groups Table of Contents
Modular forms for congruence groups are a major area of research in number theory and have been studied extensively. Modular forms for noncongruence groups are less understood. In this thesis, we look at noncongruence groups from two points of view. The first is computational: We look at a method of computation with finite index subgroups of the modular group called Farey symbols. This method a...
متن کاملOn Atkin and Swinnerton-dyer Congruence Relations (3)
In the previous two papers with the same title ([LLY05] by W.C. Li, L. Long, Z. Yang and [ALL05] by A.O.L. Atkin, W.C. Li, L. Long), the authors have studied special families of cuspforms for noncongruence arithmetic subgroups. It was found that the Fourier coefficients of these modular forms at infinity satisfy three-term Atkin and Swinnerton-Dyer congruence relations which are the p-adic anal...
متن کامل